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Connection Between Anomalies and Attacks

I Determining the correspondence between malicious
activity and anomalous activity is essential, but not an easy
task!

I Based on a generally very huge feature space, a subset of
features has to be extracted from which the system can
learn a normal behavior model

I It is common practice that such models are based on the
distributions of the observed features

I Many attacks rely on the ability of an attacker to construct
client protocols themselvs. Usually, the target environment
is not duplicated carefully
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Connection Between Anomalies and Attacks (contd.)

I Network probes and scans are necessarily anomalous
since the try to seek information legitimate users already
posess

I Already successful executed attacks against a victim
host/network often result in so called response anomalies

I Hosts/networks used as traffic amplifiers in DRDoS attacks
often show response anomalies

I A thorough description in which way attacks cause
anomalies is not possible!

I The power of employing anomaly detection regarding
attacks, lies in the fact that you do not need to know
anything about an attack!
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The Basics

I While we monitor traffic we observe certain packet header
fields (our features) and estimate the parameters of their
underlying distribution

I But, how are the header field values distributed ?
I Let a random variable X indicate whether a header field

takes on a certain value (denoted by event A, p := P(A)) or
not. This simulates a Bernoulli experiment since we only
have two outcomes. Thus it follows that

X (w) =

{
1 if w ∈ A

0 if w /∈ A
 X ∼ Bernoulli(p) (1)
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The Basics (contd.)

I We repeat the same basic random experiment n times. Let
another random variable Y indicate the number of
successes: Y = #{i : Xi = 1, i = 1, ..., n}. We get

Y =
n∑

i=1

Xi  Y ∼ Bn,p (2)

I However, we observe the whole domain D of a header
field! Thus, A1 ∪ · · · ∪ Ak = Ω, k = 1, ...,#D.

I The combined probability function of Yi , ..., Yn, Yi ∼ Bn,pi ,
is given by the multinomial distribution.

Z ∼ Mnn,p1,...,pn (3)
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Indroduction

I By assuming that we have enough amomaly-free training
traffic, it is possible to estimate the parameters of the
header field specific multinomial distribution. Lets call this
the nominal profile.

I We also define a packet window of the last N packets,
which is shifted one position per new packet arrival.
Parameters estimation of the window specific multinomial
distribution leads to a current traffic profile.

I The maximum likelihood estimator p̂i for the probabilities of
a multinomial distribution is p̂i = ni

n where ni denotes the
number of occurrences of element i .

I We can now calculate the deviation of the current
parameters from the expected parameters for normal
traffic.

di = pi nominal − pi current (4)
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Visualization

I Multinomial distribution of the nominal traffic profile
(illustrated as bar chart)



Visualization (contd.)

I Multinomial distribution under an attack (window length
equals the length of the nominal profile observation period)



Change Recognition

I Calculate the empirical cumulative distribution function
(ECDF) of the oscillations around the expected mean

I Additionally calculate the same ECDF for the last N
oscillation values (again sliding window principle)

I  Two sample Goodness-of-Fit (GoF) tests
(Kolmogorov-Smirnov, Chi-Square . . . )

I Problem: Too slow when employed at monitoring systems
for high speed links ! Optimal: solution with O(1)
complexity

I The difference between the areas under both ECDFs can
be calculated iteratively
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More Optimizations

I While estimating the parameters of the multinomial
distributions the constraint

∑n
i=1 pi = 1 must be met.

I A normalization step after each packet arrival would be
needed computationally expensive (especially for large
domains)

I Due to our iterative integral test, only the correct probability
for the value that has occured in the current packet is
needed.

I Normalization in each step is now obsolete! Result: O(1)
complexity of the update routine
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Results

I Evaluation of our approach against the DARPA 1999
Intrusion Detection Data Set

I The analysis algorithms are no longer the performance
bottleneck, but the capture routines (even in case of offline
analysis)

I Monitored protocols and fields are
I IP (protocol, ToS, total length)
I TCP (flags, source port, destination port)
I UDP (soure port, destination port)
I ICMP (ICMP type, ICMP code)
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Visualization

I Analysis of one day of training data (no attacks) and one
day of attack data for host marx



Further Work

I Increase the subset of observed features
I Include features based on measurements on a higher

abstraction level
I Reduce the yet high dimensionality vector to some

reasonable one dim. anomaly indicator



Thanks for your attention!
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