Evaluation of Hash Functions for
Passive Inter-Domain Measurements

Saverio Niccolini
(NEC Europe, Network Laboratories Heidelberg)

Maurizio Molina (DANTE)
Nick Duffield (AT&T Labs-Research)

Network Laboratories Heidelberg




Outline

- Sampling applied to Passive Measurements

* Hash-based packet selection and digesting for
Inter-Domain applications

* Hash functions requirements
- Comparison results

» Conclusion and on-going work




Sampling applied to Passive Measurements

Capture and SAMPLE packets at every Measurement Point
COHERENTLY, (timestamp them and) send a report to the collector

Data Collector __

GPS receiver
or remote
synchronization

GPS receiver
or remote
synchronization

—>
Measurement

Point 1 (MP1) Measurement

Point 2 (MP2)




Application to inter-domain

* Need to relate packets coming from
different Measurement Points
* Need to have coherent selection of packets

* Coherent selection of packets achievable
with:
- Hash-based packet sampling
+ Possible applications:
- Trajectory sampling
- One Way delay estimation
- Etc.

Inq:ﬂém@l:batmmbrbn QEEEWd')rMayfmsm Nehsurkmgnt'r ,L:.;:A‘é,;5=___? —
in proceedings of NOMS 2004 ~Empowered by Innovat




Hash based coherent packet sampling in MP

Packet (portion)
+ Timestamp

:—{ Selection ID Generation }—

-

—

packet

n
Q
®
0
—'-
~
o
<
—'-
M
»
—h
-3
o)
3
—'-
>
®
—_

°0 \
Sample pkt if |—]
Selection ID
falls in S % S
° 2Ny

Hash the K bytes with a
hash function to obtaina N

bit Selection ID

N




Requirements for coherent sampling

* Input bytes for hash function must be:
- the same for all MPs

- invariant along the path

- Selection Range must be:

- the same for all MPs

- Hash function must:

- be the same for all MPs
- be fast (works at line rate)

uniformly distribute output on [0,2N-1]
* thus sampling ratio is S/2N v S




Evaluation methodology

- Two independent hash functions:

- Selection ID (used to sample the packets)

* Requirements (in order of importance):
- speed, possibly line rate
- uniformity of the output

- Digest ID (used to assign an ID to each packet)

* Requirements (in order of importance):
- operate on keys of configurable length
- low collisions over application-relevant timescales
- Speed

* Preliminary screening led us to:
- CRC32 (classic CRC with 32 bit output)
- IPSX (IP Shift and XOR)
- Bob (collections of shift and XOR, like IPSX)
- MMH (Multi-linear Modular Hashing)




Selection ID Hash Function - Speed

» Execution time of single hash computation

- Absolute numbers may vary but relative values
are invariant

- Fair comparison (humber of parameters,
avoiding sub-calls, etc.)

Time per hash function call - Fixed key
length of 16 bytes

350

300

250

200 A
7}
c

150 -

100

50

0 I I T

bob crc32 mmbh ipsx




Selection ID Hash Function - Uniformity

Significance test (emphasizing the non-uniformities)
- gon;‘ormance to uniform distribution with Chi-square
es
- Dividing the hash range in N bins
(N = 1.000 and N = 10.000)

» Looking how many hits per bin (theoretically: packets/N)

- 60 independent tests with 400.000 packets each

- Plotting alpha values in increasing order

- Tested with synthetic and real traces

Variability metric
- Measuring smaller non-uniformities

- Smaller non-uniformities may not affect measurement
application even if detected by previous test

- calculation made on mean values and 95% confidence
intervals




Selection ID Hash Function - Uniformity

- Significance test
(testing uniformity with Chi-square test, synthetic trace)

Ordered alpha values (percentage) of 60
chi-square tests - 1,000 bins

100
90 -
80 -
70 -
60 -
50
40
30
20 -
10 | T

-l ‘

0 20 40

——crc32

4 ipsx

mmh
—x—— uniform
= = = ref.-line




Selection ID Hash Function - Uniformity

+ Significance test
(testing uniformity with Chi-square test, real trace)

Ordered alpha values (percentage) of 60
chi-square tests - 1,000 bins
TO0 AR T e e T T T eTs
90 -
80
70 +—
60 —
50 - A
b
40 -+ y ———Dbob
30 —l—crc32
—A——ipsx
20 mmh
10 —¥— uniform
= = = ref.-line
0




Selection ID Hash Function - Uniformity

* Variability metric
(the lower the value, the more uniform the behavior)

uniformity of distribution comparison of
4 Hash functions
0.12 —
0.1
A
o 008 Bbob
= bad B mmh
°E-’ 0.06 | Oipsx
Ocrc32
0.04
0.02 ﬂ —‘_I_|T
0 T T T
10,000bin- 10,000bin- 1,000bin- 1,000bin- =
synt real synt real = = —— |




Selection ID Hash Function - Results

IPSX has a big advantage in computational speed

IPSX and MMH conform the worst to the uniform
distribution

Performance of Bob worsens but not severely
CRC32 is the slowest hash function

CRC32 results seems to improve when hashing real trace
(but results are not stable)

Bob, MMH and IPSX had stable results
Variability is almost the same for all functions

Result: IPSX performed slightly worse in uniformity but
its speed make it be the best candidate as Selection ID
hash function (better trade-off)




Digest ID Hash Function - Collision

» Collision probability

Collision probability comparison of 3
hash functions

1.E-07

1.E-08 ‘ \

o \ \ —e&—bob
—l—mmh
—&—crc32
1.E-09 ‘ ,

15 20 25 30
key length [Byte]

1.E-10




Digest ID Hash Function - Speed

» Time per hash function call

Time per hash function call

530
480 . /
430

/ —e—Dbob
g 380 ——mmh

crc32

330 -
280

230 #”_/

1517192123 252729 31 33 35
key length [Byte]




Digest ID Hash Function - Results

»+ TPSX was not eligible because it does

not accept a variable string as an input
(fixed to 16 bytes)

» Bob performed slightly better than
MMH and CRC32 in collision probability

* Bob is the fastest one among the three

- Result: Bob is the best candidate as
Digest ID hash function




Conclusions

*+ We presented a methodology for testing hash
functions for packet sampling

+ We performed tests on synthetic and real
Traces

- Results

- Selection ID hash function:
- IPSX

- Digest ID hash function:
* Bob

» Results and hash functions description where
contributed to the TETF in 2 PSAMP drafts:

— draft-ietf-psamp-sample-tech-05.txt
— draft-niccolini-hash-descr-00.ixt (expired)




On-going and future work

On-going:
- Extend the software to read from tcpdump and .tsh file
(done)

- Extend the tests to a more complete set of real traces
- MAWTI traces
- NLANR traces
- Results are already there (raw files at least)
* Organizing and visualizing them
- Comparing to what we already have

Future:

- Further tests on raw bin occupancy (more detailed)
- Packet sampling applied to IPv6

- Extend the tests to IPv6 traces




Thank you!

Questions?




