

Evaluation of Hash Functions for Passive Inter-Domain Measurements

Saverio Niccolini (NEC Europe, Network Laboratories Heidelberg)

Maurizio Molina (DANTE)
Nick Duffield (AT&T Labs-Research)

Outline

- · Sampling applied to Passive Measurements
- Hash-based packet selection and digesting for Inter-Domain applications
- · Hash functions requirements
- · Comparison results
- · Conclusion and on-going work

Sampling applied to Passive Measurements

Capture and SAMPLE packets at every Measurement Point COHERENTLY, (timestamp them and) send a report to the collector

Application to inter-domain

- Need to relate packets coming from different Measurement Points
 - · Need to have coherent selection of packets
- · Coherent selection of packets achievable with:
 - Hash-based packet sampling
- Possible applications:
 - Trajectory sampling
 - One Way delay estimation
 - Etc.

Hash based coherent packet sampling in MP

Requirements for coherent sampling

- Input bytes for hash function must be:
 - the same for all MPs
 - invariant along the path
- · Selection Range must be:
 - the same for all MPs
- Hash function must:
 - be the same for all MPs
 - be fast (works at line rate)
 - uniformly distribute output on $[0,2^{N}-1]$
 - thus sampling ratio is $5/2^N$, \forall 5

Evaluation methodology

- Two independent hash functions:
 - Selection ID (used to sample the packets)
 - Requirements (in order of importance):
 - speed, possibly line rate
 - uniformity of the output
 - Digest ID (used to assign an ID to each packet)
 - · Requirements (in order of importance):
 - operate on keys of configurable length
 - low collisions over application-relevant timescales
 - speed
- · Preliminary screening led us to:
 - CRC32 (classic CRC with 32 bit output)
 - IPSX (IP Shift and XOR)
 - Bob (collections of shift and XOR, like IPSX)
 - MMH (Multi-linear Modular Hashing)

Selection ID Hash Function - Speed

- Execution time of single hash computation
 - Absolute numbers may vary but relative values are invariant
 - Fair comparison (number of parameters, avoiding sub-calls, etc.)

- Significance test (emphasizing the non-uniformities)
 - Conformance to uniform distribution with Chi-square test
 - Dividing the hash range in N bins (N = 1.000 and N = 10.000)
 - Looking how many hits per bin (theoretically: packets/N)
 - 60 independent tests with 400.000 packets each
 - · Plotting alpha values in increasing order
 - Tested with synthetic and real traces
- Variability metric
 - Measuring smaller non-uniformities
 - Smaller non-uniformities may not affect measurement application even if detected by previous test
 - calculation made on mean values and 95% confidence intervals

Significance test
 (testing uniformity with Chi-square test, synthetic trace)

• Significance test (testing uniformity with Chi-square test, real trace)

Variability metric
 (the lower the value, the more uniform the behavior)

Selection ID Hash Function - Results

- IPSX has a big advantage in computational speed
- IPSX and MMH conform the worst to the uniform distribution
- Performance of Bob worsens but not severely
- CRC32 is the slowest hash function
- CRC32 results seems to improve when hashing real trace (but results are not stable)
- Bob, MMH and IPSX had stable results
- Variability is almost the same for all functions
- Result: IPSX performed slightly worse in uniformity but its speed make it be the best candidate as Selection ID hash function (better trade-off)

Digest ID Hash Function - Collision

Collision probability

Digest ID Hash Function - Speed

Time per hash function call

Digest ID Hash Function - Results

- IPSX was not eligible because it does not accept a variable string as an input (fixed to 16 bytes)
- Bob performed slightly better than MMH and CRC32 in collision probability
- Bob is the fastest one among the three
- Result: Bob is the best candidate as Digest ID hash function

Conclusions

- We presented a methodology for testing hash functions for packet sampling
- We performed tests on synthetic and real traces
- Results
 - Selection ID hash function:
 - · IPSX
 - Digest ID hash function:
 - · Bob
- Results and hash functions description where contributed to the IETF in 2 PSAMP drafts:
 - draft-ietf-psamp-sample-tech-05.txt
 - draft-niccolini-hash-descr-00.txt (expired)

On-going and future work

- On-going:
 - Extend the software to read from tcpdump and .tsh file (done)
 - Extend the tests to a more complete set of real traces
 - MAWI traces
 - NLANR traces
 - Results are already there (raw files at least)
 - Organizing and visualizing them
 - · Comparing to what we already have
- Future:
 - Further tests on raw bin occupancy (more detailed)
 - Packet sampling applied to IPv6
 - Extend the tests to IPv6 traces

Thank you!

Questions?

